
Parameterized Quasi-Physical Simulators for001 001

Dexterous Manipulations Transfer002 002

Anonymous ECCV 2024 Submission003 003

Paper ID #10032004 004

Result of a failed baseline Improved result via optimizing through the curriculum

Timestamp Timestamp

Fig. 1: By optimizing through a quasi-physical simulator curriculum, we success-
fully transfer human demonstrations to dexterous robot hand simulations. We enable
accurate tracking of complex manipulations with changing contacts (Fig. (a)), non-
trivial object motions (Fig. (b)) and intricate tool-using (Fig. (c,d)). Besides, our
physics curriculum can substantially improve the performance of a failed baseline as
well (Fig. (e,f)).

Abstract. We explore the dexterous manipulation transfer problem by005 005

designing simulators. The task wishes to transfer human manipulations006 006

to dexterous robot hand simulations and is inherently difficult due to007 007

its intricate, highly-constrained, and discontinuous dynamics and the008 008

need to control a dexterous hand with a DoF to accurately replicate hu-009 009

man manipulations. Previous approaches that optimize in high-fidelity010 010

black-box simulators or a modified one with relaxed constraints only011 011

demonstrate limited capabilities or are restricted by insufficient simula-012 012

tion fidelity. We introduce parameterized quasi-physical simulators013 013

and a physics curriculum to overcome these limitations. The key ideas014 014

are 1) balancing between fidelity and optimizability of the simulation via015 015

a curriculum of parameterized simulators, and 2) solving the problem in016 016

each of the simulators from the curriculum, with properties ranging from017 017

high task optimizability to high fidelity. We successfully enable a dex-018 018

terous hand to track complex and diverse manipulations in high-fidelity019 019

simulated environments, boosting the success rate by 11%+ from the020 020

best-performed baseline. We include a website to introduce the work.021 021
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https://quasi-physical-sims.github.io/quasi-physical-sims-for-dex-manip/
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1 Introduction023 023

Advancing an embodied agent’s capacity to interact with the world represents024 024

a significant stride toward achieving general artificial intelligence. Due to the025 025

substantial costs and potential hazards of setting up real robots to do trial026 026

and error, the standard approach for developing embodied algorithms involves027 027

learning in physical simulators [9, 15, 23, 25, 33, 56, 59] before transitioning to028 028

real-world deployment. In most cases, physical simulators are treated as black029 029

boxes, and extensive efforts have been devoted to developing learning and op-030 030

timization methods for embodied skills within these black boxes. Despite the031 031

considerable progress [2,6–8,16,20,21,31,36,39,43,46,60,62,66,68], the question032 032

like whether the simulators used are the most suitable ones is rarely discussed. In033 033

this work, we investigate this issue and illustrate how optimizing the simulator034 034

concurrently with skill acquisition can benefit a popular yet challenging task in035 035

robot manipulation – dexterous manipulation transfer.036 036

The task aims at transferring human-object manipulations to a dexterous037 037

robot hand, enabling it to physically track the reference motion of both the038 038

hand and the object (see Fig. 1). It is challenged by 1) the complex, highly con-039 039

strained, non-smooth, and discontinuous dynamics with frequent contact estab-040 040

lishment and breaking involved in the robot manipulation, 2) the requirement of041 041

precisely controlling a dexterous hand with a high DoF to densely track the ma-042 042

nipulation at each frame, and 3) the morphology difference. Some existing works043 043

rely on high-fidelity black-box simulators, where a small difference in robot con-044 044

trol can result in dramatically different manipulation outcomes due to abrupt045 045

contact changes, making the tracking objective highly non-smooth and hard to046 046

optimize [4,6,8,43,46]. In this way, their tasks are restricted to relatively simple047 047

goal-driven manipulations such as pouring and re-locating [8,43,46,68], in-hand048 048

re-orientation, flipping and spinning [4, 6] with a fixed-root robot hand, or ma-049 049

nipulating objects with simple geometry such as balls [36]. Other approaches050 050

attempt to improve optimization by relaxing physical constraints, with a pri-051 051

mary focus on smoothing out contact responses [3,24,38,55,56]. However, their052 052

dynamics models may significantly deviate from real physics [38], hindering skill053 053

deployment. Consequently, we ask how to address the optimization challenge054 054

while preserving the high fidelity of the simulator.055 055

Our key insight is that a single simulator can hardly provide both high fidelity056 056

and excellent optimizability for contact-rich dexterous manipulations. Inspired057 057

by the line of homotopy methods [12, 28, 29, 61], we propose a curriculum of058 058

simulators to realize this. We start by utilizing a quasi-physical simulator to059 059

initially relax physical constraints and warm up the optimization. Subsequently,060 060

we transfer the optimization outcomes to simulators with gradually tightened061 061

physical constraints. Finally, we transition to a physically realistic simulator for062 062

skill deployment in realistic dynamics.063 063

To realize this vision, we propose a family of parameterized quasi-064 064

physical simulators for contact-rich dexterous manipulation tasks. These sim-065 065

ulators can be customized to enhance task optimizability while can also be tai-066 066

lored to approximate realistic physics. The parameterized simulator represents067 067
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an articulated multi rigid body as a parameterized point set, models contact068 068

using an unconstrained parameterized spring-damper, and compensates for un-069 069

modeled effects via parameterized residual physics. Specifically, the articulated070 070

multi-body dynamics model is relaxed as the point set dynamics model. An ar-071 071

ticulated object is relaxed into a set of points, sampled from the ambient space072 072

surrounding each body’s surface mesh. The resulting dynamics model combines073 073

the original articulated dynamics with the mass-point dynamics of each indi-074 074

vidual point. Parameters are introduced to control the point set construction075 075

and the dynamics model. The contact model is softened as a parameterized076 076

spring-damper model [3, 19, 35, 38, 51] with parameters introduced to control077 077

when to calculate contacts and contact spring stiffness. The residual physics078 078

network compensate for unmodeled effects from the analytical modeling [22].079 079

The parameterized simulator can be programmed for high optimizability by re-080 080

laxing constraints in the analytical model and can be tailored to approximate081 081

realistic physics by learning excellent residual physics. We demonstrate that the082 082

challenging dexterous manipulation transfer task can be effectively addressed083 083

through curriculum optimization using a series of parameterized physical simu-084 084

lators. Initially, both articulated rigid constraints and the contact model stiffness085 085

are relaxed in the simulator. It may not reflect physical realism but provides a086 086

good environment where the manipulation transfer problem can be solved eas-087 087

ily. Subsequently, the articulated rigid constraints and the contact model are088 088

gradually tightened. Task-solving proceeds iteratively within each simulator in089 089

the curriculum. Finally, the parameterized simulator is optimized to approxi-090 090

mate realistic physics. Task optimization continues, yielding a dexterous hand091 091

trajectory capable of executing the manipulation in environments with realistic092 092

physics.093 093

We demonstrate the superiority of our method and compare it with previ-094 094

ous model-free and model-based methods on challenging manipulation sequences095 095

from three datasets, describing single-hand or bimanual manipulations with096 096

daily objects or using tools. We conduct dexterous manipulation transfer on097 097

two widely used simulators, namely Bullet [9] and Isaac Gym [33] to demon-098 098

strate the generality and the efficacy of our method and the capability of our099 099

quasi-physical simulator to approximate the unknown black-box physics model100 100

in the contact-rich manipulation scenario (Fig. 1). We can track complex manip-101 101

ulations involving non-trivial object motions such as large rotations and com-102 102

plicated tool-using such as using a spoon to bring the water back and forth.103 103

Our approach successfully surpasses the previous best-performed method both104 104

quantitatively and qualitatively, achieving more than 11% success rate than the105 105

previous best-performed method. Besides, optimizing through the physics cur-106 106

riculum can significantly enhance the performance of previously under-performed107 107

RL-based methods, almost completing the tracking problem from failure, as108 108

demonstrated in Fig. 1. This indicates the universality of our approach to em-109 109

bodied AI through optimization via a physics curriculum. Thorough ablations110 110

are conducted to validate the efficacy of our designs.111 111

Our contributions are three-fold:112 112
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– We introduce a family of parameterized quasi-physical simulators that can113 113

be configured to relax various physical constraints, facilitating skill optimiza-114 114

tion, and can also be tailored to achieve high simulation fidelity.115 115

– We present a quasi-physics curriculum along with a corresponding opti-116 116

mization method to address the challenging dexterous manipulation transfer117 117

problem.118 118

– Extensive experiments demonstrate the effectiveness of our method in trans-119 119

ferring complex manipulations, including non-trivial object motions and120 120

changing contacts, to a dexterous robot hand in simulation.121 121

2 Related Works122 122

Dexterous manipulation transfer. Transferring human manipulations to123 123

dexterous robot-hand simulations is an important topic in robot skill acquisi-124 124

tion [8,21,31,43,60,62,68,70]. Most approaches treat the simulator as black-box125 125

physics models and try to learn skills directly from that [4,6,8,43,46]. However,126 126

their demonstrated capabilities are restricted to relatively simple tasks. Another127 127

trend of work tries to relax the physics model [37,38] to create a better environ-128 128

ment for task optimization. However, due to the disparity between their mod-129 129

eling approach and realistic physics, successful trials are typically demonstrated130 130

only in their simulators, which can hardly complete the task under physically131 131

realistic dynamics. In this work, we introduce various parameterized analytical132 132

relaxations to improve the task optimizability while compensating for unmodeled133 133

effects via residual physics networks so the fidelity would not be sacrificed.134 134

Learning for simulation. Analytical methods can hardly approximate an ex-135 135

tremely realistic physical world despite lots of smart and tremendous efforts136 136

made in developing numerical algorithms [19, 23, 26, 27]. Recently, data-driven137 137

approaches have attracted lots of interest for their high efficiency and strong138 138

approximation ability [10, 11, 22, 40, 41, 50, 63]. Special network designs are pro-139 139

posed to learn the contact behaviour [22,41]. We in this work propose to leverage140 140

an analytical-neural hybrid approach and carefully design network modules for141 141

approximating residual contact forces in the contact-rich manipulation scenario.142 142

Sim-to-Sim and Sim-to-Real transfer. The field of robot manipulation con-143 143

tinues to face challenges in the areas of Sim2Sim and Sim2Real transferabil-144 144

ity [71]. Considering the modeling gaps, the optimal strategy learned in a specific145 145

simulator is difficult to transfer to a different simulator or the real world. There-146 146

fore, many techniques for solving the problem have been proposed, including147 147

imitation learning [34,42,43,45,46,48], transfer learning [72], distillation [47,57],148 148

residual physics [17,67], and efforts on bridging the gap from the dynamics model149 149

aspect [22, 69]. Our parameterized simulators learn residual physics involved in150 150

contact-rich robot manipulations. By combining an analytical base with residual151 151

networks, we showcase their ability to approximate realistic physics.152 152

3 Method153 153

Given a human manipulation demonstration, composed of a human hand mesh154 154

trajectory and an object pose trajectory {H,O}, the goal is transferring the155 155
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Fig. 2: The parameterized quasi-physical simulator relaxes the articulated multi
rigid body dynamics as the parameterized point set dynamics, controls the contact
behavior via an unconstrained parameterized spring-damper contact model, and com-
pensates for unmodeled effects via parameterized residual physics networks. We tackle
the difficult dexterous manipulation transfer problem via a physics curriculum.

demonstration to a dexterous robot hand in simulation. Formally, we aim to156 156

optimize a control trajectory A that drives the dexterous hand to manipulate the157 157

object in a realistic simulated environment so that the resulting hand trajectory158 158

Ĥ and the object trajectory Ô are close to the reference motion {H,O}. The159 159

problem is challenged by difficulties from the highly constrained, discontinuous,160 160

and non-smooth dynamics, the requirement of controlling a high DoF dexterous161 161

hand for tracking, and the morphology difference.162 162

Our method comprises two key designs to tackle the challenges: 1) a family of163 163

parameterized quasi-physical simulators, which can be programmed to enhance164 164

the optimizability of contact-rich dexterous manipulation tasks and can also be165 165

tailored to approximate realistic physics (Section 3.1), and 2) a physics curricu-166 166

lum that carefully adjusts the parameters of a line of quasi-physical simulators167 167

and a strategy that solves the difficult dexterous manipulation transfer task by168 168

addressing it within each simulator in the curriculum (Section 3.2).169 169

3.1 Parameterized Quasi-Physical Simulators170 170

Our quasi-physical simulator represents an articulated multi-body, i.e., the robotic171 171

dexterous hand, as a point set. The object is represented as a signed distance172 172

field. The base of the simulator is in an analytical form leveraging an uncon-173 173

strained spring-damper contact model. Parameters are introduced to control the174 174

analytical relaxations on the articulated rigid constraints and the softness of the175 175

contact model. Additionally, neural networks are introduced to compensate for176 176

unmodeled effects beyond the analytical framework. We will elaborate on each177 177

of these design aspects below.178 178

Parameterized point set dynamics. Articulated multi-body represented in179 179

the reduced coordinate system [19,59] may require a large change in joint states180 180

to achieve a small adjustment in the Euclidean space. Moving the end effector181 181

from one point to a nearby point may require adjusting all joint states (Fig. 3).182 182

Besides, transferring the hand trajectory to a morphologically different hand183 183

requires correspondences to make the resulting trajectory close to the original184 184

one. Defining correspondences in the reduced coordinate or via sparse correspon-185 185
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dences will make the result suffer from noise in the data, leading to unwanted186 186

results finally (Fig. 3). Hence, we propose relaxing an articulated multi-rigid187 187

body into a mass-point set sampled from the ambient space surrounding each188 188

body. Each point is considered attached to the body from which it is sampled189 189

and is capable of both self-actuation and actuation via joint motors. We intro-190 190

duce a parameter α to control the point set construction and the dynamics.191 191

This representation allows an articulated rigid object to behave similarly to a192 192

deformable object, providing a larger action space to adjust its state and thereby193 193

easing the control optimization problem.194 194

A
B

A
B

Wish to change the
contact point from A to B

Result: adjust two joint
states to achieve this

A
B

Wish to change the
contact point from A to B

A
B

Result: adjust one joint
state and a few point states

Articulated
Multi-Body

Point Set

Noise in data

Transfer w/o Point set

Transfer w/ Point set

Fig. 3: Point Set can
flexibly adjust its states,
avoid overfitting to data
noise, and ease the difficulty
brought by the morphology
difference.

Specifically, for each body of the articulated ob-195 195

ject, we sample a set of points from the ambient196 196

space near the body mesh. The point set Q is con-197 197

structed by concatenating all sampled points to-198 198

gether. Each point pi ∈ Q is treated as a mass199 199

point with a finite mass mi and infinitesimal vol-200 200

ume. The dynamics of the point set consist of artic-201 201

ulated multi-body dynamics [14, 30], as well as the202 202

mass point dynamics of each point pi. For each pi,203 203

we have:204 204

miẍi = Jiu+ αfi + αai, (1)205 205

where Ji represents the Jacobian mapping from the206 206

generalized velocity to the point velocity ẋi, u de-207 207

notes the generalized joint force, fi accounts for ex-208 208

ternal forces acting on pi, and ai ∈ R3 represents the actuation force applied to209 209

the point pi. Consequently, the point set is controlled by a shared control in the210 210

reduced coordinate space u and per-point actuation force ai.211 211

Parameterized spring-damper contact modeling. To ease the optimization212 212

challenges posed by contact-rich manipulations, which arise from contact con-213 213

straints such as the non-penetration requirement and Coulomb friction law [3,5],214 214

as well as discontinuous dynamics involving frequent contact establishment and215 215

breaking, we propose a parameterized contact model for relaxing constraints216 216

and controlling the contact behavior. Specifically, we leverage a classical un-217 217

constrained spring-damper model [19, 35, 51, 59, 64] to model the contacts. This218 218

model allows us to flexibly adjust the contact behavior by tuning the contact219 219

threshold and the spring stiffness coefficients. Intuitively, a contact model with220 220

a high threshold and low spring stiffness presents “soft” behaviors, resulting in221 221

a continuous and smooth optimization space. This makes optimization through222 222

such a contact model relatively easy. Conversely, a model with a low threshold223 223

and large stiffness coefficients will produce “stiff” behaviors, increasing the dis-224 224

continuity of the optimization space due to frequent contact establishment and225 225

breaking. However, it also becomes more physically realistic, meaning contact226 226

forces are calculated only when two objects collide, and a large force is applied227 227

to separate them if penetrations are observed, thus better satisfying the non-228 228

penetration condition. Therefore, by adjusting the contact distance threshold229 229
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and spring stiffness coefficients, we can modulate the optimizability and fidelity230 230

of the contact model. The parameter set of the contact model comprises a dis-231 231

tance threshold dc and spring stiffness coefficients. Next, we will delve into the232 232

details of the contact establishment, breaking, and force calculations processes.233 233

Contacts are established between points in the manipulator’s point set Q234 234

and the object. A point p ∈ Q is considered to be in “contact” with the object235 235

if its signed distance to the object sd(p) is smaller than the contact distance236 236

threshold dc. Subsequently, the object surface point nearest to p is identified as237 237

the corresponding contact point on the object, denoted as po. The normal direc-238 238

tion of the object point po is then determined as the contact normal direction,239 239

denoted as no. The contact force f c applied from the manipulator point p to po240 240

is calculated as follows:241 241

f c = −(knd− kddḋ)no, (2)242 242

where, kn represents the spring stiffness coefficient, kd denotes the damping243 243

coefficient, and d = dc − sd(p) is always positive. To enhance the continuity of244 244

f c [64], kddḋ is used as the magnitude of the damping force, rather than kdḋ.245 245

Friction forces are modeled as penalty-based spring forces [3,65]. Once a point246 246

p is identified as in contact with the object, with the object contact point denoted247 247

as po, the contact pair is stored. Contact forces between them are continually248 248

calculated until the contact breaking conditions are met. In more detail, the249 249

static friction force from p to po is calculated using a spring model:250 250

ffs = kfTn(p− po), (3)251 251

where kf is the friction spring stiffness coefficient, Tn = I−nonoT is a tangential252 252

projection operator. When the static friction satisfies ∥ffs ∥ ≤ µ∥f c∥, ffs is applied253 253

to the object point po. Otherwise, the dynamic friction force is applied, and the254 254

contact breaks:255 255

ffd = −µ∥ffs ∥
Tnvp←po

∥Tnvp←po∥
, (4)256 256

where vp←po is the relative velocity between p and po.257 257

Parameterized residual physics. The analytical designs facilitate relaxation258 258

but may limit the use of highly sophisticated and realistic dynamics models,259 259

deviating from real physics. To address this, the final component of our quasi-260 260

physical simulator is a flexible neural residual physics model [1, 22,41].261 261

Specifically, we propose to use networks to learn to predict residual con-262 262

tact forces and friction forces from contact-related information. For fine-grained263 263

residual contact force prediction, we design a local contact network fψlocal that264 264

inherits contact information identified in the parameterized contact model and265 265

predicts residual forces between each contact pair. To close the gap caused by266 266

contact region identification between the parameterized contact model and real267 267

contact region, we further include a global residual network fψglobal that predicts268 268

residual forces and torques added directly to the object’s center of mass. In more269 269

detail, given a contact pair (p,po), the local contact network maps the contact-270 270

related features of the local contact region, consisting of geometry, per-point271 271

velocity, and per object point normal, to the residual contact force and residual272 272
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friction force between such two points in the contact pair. The global residual273 273

network additionally takes contact-related information of the global contact re-274 274

gion, including the geometry, per-point velocity, and per-object point normal,275 275

as input and predicts a residual force and residual torque added to the object’s276 276

center of mass. Details such as contact region identification and network ar-277 277

chitectures are deferred to the Supp. We denote the optimizable parameters in278 278

the residual physics network as ψ = (ψglobal, ψlocal). By optimizing the resid-279 279

ual physics network, we unlock the possibility of introducing highly non-linear280 280

dynamics to align our parametrized quasi-physical simulator with any realistic281 281

black-box physical simulator.282 282

Semi-implicit time-stepping is leveraged to make the simulation auto differ-283 283

entiable and easy to combine with neural networks [22].284 284

3.2 Dexterous Manipulation Transfer via a Physics Curriculum285 285

Based on the family of parameterized quasi-physical simulators, we propose to286 286

solve the challenging dexterous manipulation transfer problem via a physics cur-287 287

riculum. It is constructed by a series of parameterized simulators varying from288 288

the one with few constraints and the softest contact behavior, gradually to a re-289 289

alistic simulator. We then solve the problem by transferring the demonstration290 290

to the dexterous hand in each simulator across the curriculum gradually. In more291 291

detail, the optimization starts from the parameterized simulator with both the292 292

articulated rigid constraints removed and the contact model tuned to the softest293 293

level. The residual physics networks are deactivated. It provides a friendly envi-294 294

ronment for optimization, and we can easily arrive at a workable hand trajectory295 295

here. Then the physics is gradually tightened and we solve the task in each sim-296 296

ulator. After reaching the most tightened analytical model, the analytical part297 297

is fixed and residual networks are activated. The simulator is gradually opti-298 298

mized to approximate the dynamics in a realistic physical environment. At the299 299

same time, the control trajectory A continues to be refined in the quasi-physical300 300

simulator. Finally, we arrive at a simulator optimized to be with high fidelity301 301

and a trajectory A that can drive the dexterous hand to physically track the302 302

demonstration in a realistic simulated physical environment. Additionally, since303 303

object properties as well as system parameters like linear and angular velocity304 304

damping coefficients are unknown from the kinematics-only demonstration, we305 305

set them optimizable and identify them (denoted S) together with optimizing306 306

the hand control trajectory. Next we’ll illustrate this in detail.307 307

Transferring human demonstration via point set dynamics. To robustly308 308

transfer the human demonstration to a morphologically different dexterous robot309 309

hand in simulation and to overcome noise in the kinematic trajectory, we ini-310 310

tially relax the articulated rigid constraints and transfer the kinematics human311 311

demonstration to the control trajectory of the point set. Specifically, the point set312 312

representation with the relaxation parameter α for the dynamic human hand [8]313 313

is constructed. The shared control trajectory A and per-point per-frame actions314 314

are optimized so that the resulting trajectory of the point set can manipulate315 315

the object according to the demonstration. After that, a point set with the same316 316
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parameter α is constructed to represent the dexterous robot hand. Subsequently,317 317

the shared control trajectory A and per-point per-frame actions are optimized318 318

to track the manipulation accordingly.319 319

Transferring through a contact model curriculum. After that, the articu-320 320

lated rigid constraint is tightened by freezing the point set parameter α to zero.321 321

The following optimization starts from a parameterized simulator with the soft-322 322

est contact model. We then gradually tighten the contact model by adjusting its323 323

distance threshold, contact force spring stiffness, etc. By curriculum optimizing324 324

the trajectory A and parameters S in each of the quasi-physical simulators, we325 325

finally arrive at the control trajectory that can drive a dexterous hand to accom-326 326

plish the tracking task in the parameterized simulator with the most tightened327 327

analytical model.328 328

Optimizing towards a realistic physical environment. Subsequently, the329 329

residual physics network is activated and the parameterized simulator is opti-330 330

mized to approximate the dynamics in a realistic physical environment. We con-331 331

tinue to optimize the hand trajectory in the quasi-physical simulator. Specifically,332 332

we leverage the successful trial in model-based human tracking literature [16,66]333 333

and iteratively optimize the control trajectory A and the parameterized simu-334 334

lator. In more detail, the following two subproblems are iteratively solved: 1)335 335

optimizing the quasi-physical simulator to approximate the realistic dynamics,336 336

and 2) optimizing the control trajectory A to complete the manipulation in337 337

the quasi-physical simulator. Gradient-based optimization is leveraged taking338 338

advantage of the differentiability of the parameterized simulator.339 339

After completing the optimization, the final control trajectory is yielded by340 340

model predictive control (MPC) [18] based on the optimized parameterized sim-341 341

ulator and the hand trajectory A. Specifically, in each step, the current and342 342

the following controls in several subsequent frames are optimized to reduce the343 343

tracking error. More details are deferred to the Supp.344 344

4 Experiments345 345

We conduct extensive experiments to demonstrate the effectiveness of our method.346 346

The evaluation dataset is constructed from three HOI datasets with both single-347 347

hand and bimanual manipulations (with rigid objects), with complex manipula-348 348

tions with non-trivial object movements, and rich and changing contacts involved349 349

(see Section 4.1). We use Shadow hand [49] and test in two simulators widely350 350

used in the embodied AI community: Bullet [9] and Isaac Gym [33]. We com-351 351

pare our method with both model-free approaches and model-based strategies352 352

and demonstrate the superiority of our method both quantitatively and qual-353 353

itatively. We can track complex contact-rich manipulations with large object354 354

rotations, back-and-forth object movements, and changing contacts successfully355 355

in both of the two simulators, while the best-performed baseline fails (see Sec-356 356

tion 4.2, Fig. 4). On average, we boost the tracking success rate by 11%+ from357 357

the previous best-perfomed (see Section 4.2). We make further analysis and dis-358 358

cussions and show that the core philosophy of our work, optimizing through a359 359

quasi-physics curriculum, is potentially general and can help improve the per-360 360

formance of a model-free baseline (see Section 4.3).361 361
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Fig. 4: Qualitative comparisons. Please refer to our website and the supple-
mentary video for animated results.

4.1 Experimental Settings362 362

Datasets. Our evaluation dataset is compiled from three distinct sources, namely363 363

GRAB [53], containing single-hand interactions with daily objects, TACO [32],364 364

containing humans manipulating tools, and ARCTIC [13] with bimanual manip-365 365

ulations. For GRAB, we randomly sample a manipulation trajectory for each366 366

object. If its manipulation is extremely simple, we additionally sample one tra-367 367

jectory for it. The object is not considered if its corresponding manipulation368 368

is bimanual such as binoculars, involves other body parts such as bowl, or369 369

with detailed part movements such as the game controller. The number of370 370

manipulation sequences from GRAB is 27. For TACO [32], we acquire data by371 371

contacting authors. We randomly select one sequence for each right-hand tool ob-372 372

ject. Sequences with very low quality like erroneous object motions are excluded.373 373

14 trajectories in total are selected finally. For ARCTIC [13], we randomly se-374 374

lect one sequence for each object from its available manipulation trajectories,375 375

resulting in 10 sequences in total. More details are deferred to the Supp.376 376

Metrics. We introduce three distinct metrics to assess the quality of object377 377

tracking, the accuracy of hand tracking, and the overall success of the tracking378 378

task: 1) Per-frame average object rotation error: Rerr =
1
N

∑N
n=1(1− (qn · q̂n)),379 379

https://quasi-physical-sims.github.io/quasi-physical-sims-for-dex-manip/
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where qn is the ground-truth orientation and q̂n is the tracked result, rep-380 380

resented in quaternion. 2) Per-frame average object translation error: Terr =381 381
1
N

∑N
n=1 ∥tn− t̂n∥, where t and tn are ground-truth and tracked translations re-382 382

spectively. 3) Mean Per-Joint Position Error (MPJPE) = 1
N

∑N
n=1 ∥Jn−Ĵn∥ [20,383 383

44, 58], where Jn and Ĵn are keypoints of GT human hand and the simulated384 384

robot hand respectively. We manually define the keypoints and the correspon-385 385

dences to the human hand keypoints for the Shadow hand. 4) Per-frame aver-386 386

age hand Chamfer Distance: CD = 1
N

∑N
n=1 Chamfer-Distance(Hn − Ĥn), for387 387

evaluating whether the Shadow hand can “densely” track the demonstration.388 388

5) Success rate: a tracking is regarded as successful if the object rotation er-389 389

ror Rerr, object translation error Terr, and the hand tracking error MPJPE are390 390

smaller than their corresponding threshold. Three success rates are calculated391 391

using three different thresholds, namely 10◦−10cm−10cm, 15◦−15cm−15cm.392 392

Baselines. We compare with two trends of baselines. For model-free approaches,393 393

since there is no prior work with exactly the same problem setting as us, we try to394 394

modify and improve a goal-driven rigid object manipulation method DGrasp [8]395 395

into two methods for tracking: 1) DGrasp-Base, where the method is almost kept396 396

with same with the original DGrasp. We use the first frame where the hand and397 397

the object are in contact with each other as the reference frame. Then the policy398 398

is trained to grasp the object according to the reference hand and object goal399 399

at first. After that, only the root is guided to complete the task. 2) DGrasp-400 400

Tracking, where we divide the whole sequence into several subsequences, each of401 401

which has 10 frames, and define the end frame of the subsequence as the reference402 402

frame. Then the grasping policy is used to guide the hand and gradually track403 403

the object according to the hand and the object pose of each reference frame.404 404

We improve the DGrasp-Tracking by optimizing the policy through the quasi-405 405

physical curriculum and creating “DGrasp-Tracking (w/ Curriculum)” trying to406 406

improve its performance. For model-based methods, we compare with Control-407 407

VAE [66] and traditional MPC approaches. For Control-VAE, we modify its408 408

implementation for the manipulation tracking task. We additionally consider409 409

three differentiable physics models to conduct model-predictive control for solv-410 410

ing the task. Taking the analytical model with the most tightened contact model411 411

as the base model (“MPC (w/ base sim.)”), we further augment it with a general412 412

state-of-the-art contact smoothing for robot manipulation [52] and create “MPC413 413

(w/ base sim. w/ soften)”. Details of baseline models are deferred to the Supp.414 414

Training and evaluation settings. The physics curriculum is composed of415 415

three stages. In the first stage, the parameter α varies from 0.1 to 0.0 and the416 416

contact model stiffness is relaxed to the softest level. In the second stage, α is417 417

fixed and the contact model stiffness varies from the softest version to the most418 418

tightened level gradually through eight stages. Details w.r.t. parameter settings419 419

are deferred to the Supp. In the first two stages, we alternately optimize the420 420

trajectory A and parameters S. In each optimization iteration, the A is optimized421 421

for 100 steps while S is optimized for 1000 steps. In the third stage, A and ψ are422 422

optimized for 256 steps in each iteration. For time-stepping, dt is set to 5×10−4423 423

in the parameterized and the target simulators. The articulated multi-body is424 424
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Table 1: Quantitative evaluations and comparisons to baselines. Bold red
numbers for best values and italic blue values for the second best-performed ones.
Simulator Method Rerr (◦, ↓) Terr (cm, ↓) MPJPE (mm, ↓) CD (mm, ↓) Success Rate (%, ↑)

Bullet

Model
Free

DGrasp-Base 44.24 5.82 40.55 16.37 0/13.73/15.69
DGrasp-Tracking 44.45 5.04 37.56 14.72 0/15.69/15.69
DGrasp-Tracking (w/ curric.) 33.86 4.60 30.47 13.53 7.84/23.53/37.25

Model
Based

Control-VAE 42.45 2.73 25.21 10.94 0/15.68/23.53
MPC (w/ base sim.) 32.56 3.67 24.62 10.80 0/15.68/31.37
MPC (w/ base sim. w/ soften) 31.89 3.63 28.26 11.31 0/21.57/37.25

Ours 24.21 1.97 24.40 9.85 27.45/37.25/58.82

Isaac Gym

Model
Free

DGrasp-Base 36.41 4.56 50.97 18.78 0/7.84 /7.84
DGrasp-Tracking 44.71 5.57 41.53 16.72 0/0/7.84
DGrasp-Tracking (w/ curric,) 38.75 5.13 40.09 16.26 0/23.53/31.37

Model
Based

Control-VAE 35.40 4.61 27.63 13.17 0/13.73/29.41
MPC (w/ base sim.) 37.23 4.73 23.19 9.75 0/15.69/31.37
MPC (w/ base sim. w/ soften) 36.40 4.46 23.27 10.34 0/9.80/23.53

Ours 25.97 2.08 25.33 10.31 21.57/43.14/56.86

controlled by joint motors and root velocities in the parameterized quasi-physical425 425

simulator while PD control [54] is leveraged in the target simulators.426 426

4.2 Dexterous Manipulating Tracking427 427

We conducted thorough experiments in two widely used simulators [9, 33]. We428 428

treat them as realistic simulated physical environments with high fidelity and429 429

wish to track the manipulation in them. In summary, we can control a dexterous430 430

hand to complete a wide range of the manipulation tracking tasks with non-431 431

trivial object movements and changing contacts. As presented in Table 1, we432 432

can achieve significantly higher success rates calculated under three thresholds433 433

than the best-performed baseline in both tested simulators. Fig. 4 showcases434 434

qualitative examples and comparisons. Please refer to our website and supple-435 435

mentary video for animated results.436 436

Complex manipulations. For examples shown in Fig. 4, we can complete437 437

the tracking task on examples with large object re-orientations and complicated438 438

tool-using (Fig. (a,b,c)). However, DGrasp-Tracking fails to establish sufficient439 439

contact for correctly manipulating the object. In more detail, in Fig. 4(b), the440 440

bunny gradually bounced out from its hand in Bullet, while our method does441 441

not suffer from this difficulty. In Fig. 4(c), the spoon can be successfully picked442 442

up and waved back-and-forth in our method, while DGrasp-Tracking loses the443 443

track right from the start.444 444

Bimanual manipulations. We are also capable of tracking bimanual manipu-445 445

lations. As shown in the example in Fig. 4(d), where two hands collaborate to446 446

relocate the object, DGrasp-Tracking fails to accurately track the object, while447 447

our method significantly outperforms it.448 448

4.3 Further Analysis and Discussions449 449

Could model-free methods benefit from the physics curriculum? In ad-450 450

dition to the demonstrated merits of our quasi-physical simulators, we further451 451

explore whether model-free strategies can benefit from them. We introduce the452 452

“DGrasp-Tracking (w/ Curriculum)” method and compare its performance with453 453

https://quasi-physical-sims.github.io/quasi-physical-sims-for-dex-manip/
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Table 2: Ablation studies. Bold red numbers for best values and italic blue values
for the second best-performed ones. The simulation environment is Bullet.
Method Rerr (◦, ↓) Terr (cm, ↓) MPJPE (mm, ↓) CD (mm, ↓) Success Rate (%, ↑)

Ours w/o Analytical Sim. 44.27 4.39 29.84 12.91 0/13.73/25.49
Ours w/o Residual Physics 33.69 3.81 26.57 10.34 5.88/23.53/41.18
Ours w/o Local Force NN 35.98 2.90 32.87 12.44 0/19.61/35.29
Ours w/o Curriculum 42.40 4.87 32.61 13.37 0/17.64/29.41
Ours w/ Curriculum II 29.58 2.33 31.61 10.29 11.76/27.45/50.98
Ours 24.21 1.97 24.40 9.85 27.45/37.25/58.82

the original DGrasp-Tracking model. As shown in Table 1 and the visual compar-454 454

isons in Fig. 6, the DGrasp-Tracking model indeed benefits from a well-designed455 455

physics curriculum. For example, as illustrated in Fig. 6, the curriculum can456 456

significantly improve its performance, enabling it to nearly complete challenging457 457

tracking tasks where the original version struggles.458 458

5 Ablation Study459 459
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(a) Qualitative comparisons on the stapler example

(b) Training loss comparisons

(c) Tracking loss comparisons

Fig. 5: (a) Qualitative comparisons between our full method and the ablated models;
(b) Training loss curve comparisons; (c) Tracking loss curve comparisons.

Human
Demo

DGrasp-
Tracking

DGrasp-
Tracking

(Curriculum)

Fig. 6: Visual evidence on boosting DGrasp-Tracking’s performance via optimizing it
through a physics curriculum.

We conduct a wide range of ablation studies to validate the effectiveness460 460

of some of our crucial designs, including the parameterized analytical physics461 461

model, the parameterized residual physics, the role of the local force network,462 462
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the necessity of introducing a physics curriculum into the optimization, and how463 463

the design on the curriculum stages affects the result.464 464

Parameterized analytical model. The skeleton of the quasi-physical simu-465 465

lator is an analytical physics model. The intuition is that the parameterized466 466

simulator with such physical bias can be optimized towards a realistic simulator467 467

more easily than training pure neural networks for approximating. To validate468 468

this, we ablate the analytical model and use neural networks to approximate469 469

physics in Bullet directly (denoted as “Ours w/o Analytical Sim.”). The quanti-470 470

tative (Table 2) and qualitative (Fig. 5) results indicate that the physical biases471 471

brought by the analytical model could help the parameterized simulator to learn472 472

better physics in the contact-rich scenario. For instance, in the example demon-473 473

strated in Fig. 5, the ablated version fails to guide the robot hand to successfully474 474

pinch the object in the second figure.475 475

Parameterized residual physics. To validate the necessity of introducing476 476

residual force networks to close the gap between the physics modeled in the477 477

parameterized analytical simulator and that of a realistic simulator, we ablate478 478

the parameterized force network and create a version named “Ours w/o Residual479 479

Physics”. Table 2 demonstrated its role in enabling the parameterized simulator480 480

to approximate realistic physics models.481 481

Local residual force network. To adequately leverage state and contact-482 482

related information for predicting residual contact forces, we propose to use two483 483

types of networks: 1) a local force network for per contact pair residual forces484 484

and 2) a global network for additionally compensating. The local network is485 485

introduced for fine-grained approximation. We ablate this design and compare486 486

the result with our full model to validate this (see Fig. 5 and Table 1).487 487

Optimizing through an analytical physics curriculum. We further inves-488 488

tigate the effectiveness of the analytical curriculum design and how its design489 489

influences the result. Specifically, we create two ablated versions: 1) “Ours w/o490 490

Curriculum”, where the optimization starts directly from the parameterized ana-491 491

lytical model with articulated rigid constraints tightened and the stiffest contact492 492

model, and 2) “Ours w/ Curriculum II”, where we move some stages out from the493 493

original curriculum. Table 2 and Fig. 5 demonstrate that both the curriculum494 494

and the optimization path will affect the model’s performance.495 495

6 Conclusion and Limitations496 496

In this work, we investigate creating better simulators for solving complex robotic497 497

tasks involving complicated dynamics where the previous best-performed op-498 498

timization strategy fails. We present a family of parameterized quasi-physical499 499

simulators that can be both programmed to relax various constraints for task500 500

optimization and can be tailored to approximate realistic physics. We tackle the501 501

difficult manipulation transfer task via a physics curriculum.502 502

Limitations. The method is limited by the relatively simple spring-damper503 503

model for contact constraint relaxation. Introducing delicate analytical contact504 504

models to parameterized simulators is an interesting research direction.505 505
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